
CLOnE: Controlled Language for Ontology
Editing

Adam Funk1, Valentin Tablan1, Kalina Bontcheva1, Hamish Cunningham1,
Brian Davis2, and Siegfried Handschuh2

1 University of Sheffield, UK
2 Digital Enterprise Research Institute, Galway, Ireland

Abstract. This paper presents a controlled language for ontology edit-
ing and a software implementation, based partly on standard NLP tools,
for processing that language and manipulating an ontology. The input
sentences are analysed deterministically and compositionally with re-
spect to a given ontology, which the software consults in order to inter-
pret the input’s semantics; this allows the user to learn fewer syntactic
structures since some of them can be used to refer to either classes or
instances, for example. A repeated-measures, task-based evaluation has
been carried out in comparison with a well-known ontology editor; our
software received favourable results for basic tasks. The paper also dis-
cusses work in progress and future plans for developing this language
and tool.

1 Introduction

Creating formal data is a high initial barrier for small organisations and indi-
viduals wishing to create ontologies and thus benefit from semantic knowledge
technologies. Part of the solution comes from ontology authoring tools such as
Protégé1, but they often require specialist skills in ontology engineering. There-
fore defining a controlled language (CL) for formal data description will enable
naive users to develop ontologies using a subset of natural language. Building
on both controlled language and machine-translation (MT) work, processing in-
put in a controlled language may achieve the high levels of accuracy necessary
to make the ontology authoring process more widely feasible. The growing in-
terest in Semantic Web applications and need to translate information into a
machine-readable format create many uses for such applications.

The Controlled Language for Ontology Editing (CLOnE) allows users to de-
sign, create, and manage information spaces without knowledge of complicated
standards (such as XML, RDF and OWL) or ontology engineering tools. It is
implemented as a simplified natural language processor that allows the speci-
fication of logical data for semantic knowledge technology purposes in normal
language, but with high accuracy and reliability. The components are based on

1 http://protege.stanford.edu

K. Aberer et al. (Eds.): ISWC/ASWC 2007, LNCS 4825, pp. 142–155, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://protege.stanford.edu

CLOnE: Controlled Language for Ontology Editing 143

GATE’s existing tools for IE (information extraction) and NLP (natural lan-
guage processing). [1] CLOnE is designed either to accept input as valid (in
which case accuracy is generally 100%) or to reject it and warn the user of his
errors; because the parsing process is deterministic, the usual IE performance
measures (precision and recall) are not relevant.

The prototype was developed and reported in [2] but not evaluated. The
CLOnE system has since matured and the main contribution of this work is a
repeated-measures task-based evaluation in comparison to a standard ontology
editor (Protégé). CLOnE has been evaluated favourably by test users and is be-
ing further developed and applied in current and future projects. The remainder
of this paper is organized as follows: Section 2 briefly discusses existing con-
trolled languages and applications related to the Semantic Web field, Section 3
discusses our design and implementation and Section 4 presents our evaluation
and discusses our quantitative findings. Finally, Section 5 and Section 6 offer
conclusions and future work.

2 Related Work

“Controlled Natural Languages are subsets of natural language whose grammars
and dictionaries have been restricted in order to reduce or eliminate both am-
biguity and complexity.” [3] The concept was originally proposed in the 1930s
by linguists and scholars who sought to establish a “minimal” variety of En-
glish, in order to make it accessible and usable internationally for as many
people as possible (especially non-native speakers). [3] CLs were later devel-
oped specifically for computational treatment. Early CLs include Caterpillar
Fundamental English (CFE) [4] and have subsequently evolved into many vari-
ations and flavors such as Smart’s Plain English Program (PEP) [5], White’s
International Language for Serving and Maintenance (ILSAM) [5] and Simpli-
fied English.2 They have also found favor in large multi-national corporations
such as IBM, Rank, Xerox and Boeing, usually within the context of user-
documentation production, machine translation and machine-aided translation.
[3,5]

Using CLs for ontology authoring and instance population has already evolved
into an active research area. Previous work includes the translation of a CL,
PENG-D, into first-order logic (FOL), in order to target the CL to a knowledge
representation language such as RDFS or OWL, based on the proposal of FOL
as the “semantic underpinning” of the semantic web. [6,7]

A well known implementation of this approach (translating to FOL) is the
use of the popular CL, Attempto Controlled English3 (ACE) [8], as an ontology
authoring language. It is a subset of standard English designed for knowledge
representation and technical specifications, and constrained to be unambigu-
ously machine-readable into discourse representation structures, a form of first-
order logic. (It can also be translated into other formal languages.) ACE has
2 http://www.simplifiedenglish-aecma.org/Simplified English.htm
3 http://www.ifi.unizh.ch/attempto/

http://www.simplifiedenglish-aecma.org/Simplified_English.htm
http://www.ifi.unizh.ch/attempto/

144 A. Funk et al.

been adopted as the controlled language for the EU FP6 Network of Excellence
REWERSE4 (Reasoning on the Web with Rules and Semantics). [9]. The At-
tempto Parsing Engine (APE) consists principally of a definite clause grammar,
augmented with features and inheritance and written in Prolog. [10] This tool
can be tested and demonstrated with a web browser through the APE Webin-
terface5 and clients for the APE web service are also available.6 REWERSE
also proposes ACE OWL, a sublanguage of ACE, as a means of writing formal,
simultaneously human- and machine-readable summaries of scientific papers.
[11,12]

ACE itself however prohibits certain very natural constructions such as the use
of only as an adverb. Since ACE OWL also aims to provide reversibility (trans-
lating OWL DL into ACE), OWL’s allValuesFrom must be translated into a con-
struction which can be rather difficult for humans to read. Futhermore, ACE OWL
does not currently support enumerations (OWL’s oneOf) and has limited support
for datatype properties; it also imposes several further restrictions on ACE, such
as the elimination of plural nouns. ACE itself stipulates a predefined lexicon but
unknown words can be used if they are annotated with a POS (part of speech)
tag; however this requires the user to be familiar with the lexicon. [13]

AquaLog7 is an ontology-driven, portable question-answering (QA) system de-
signed to provide a natural language query interface to semantic mark-up stored
in knowledge base. Like CLOnE, it uses JAPE8 grammars and other tools from
the GATE framework [1]. AquaLog uses them to perform shallow parsing on
the user’s natural-language questions and translate them into a representation
called Query-Triples (rather than discourse representation structures or first-
order logic). [14] The Relation Similarity Service (RSS) module then maps the
questions to ontology-compliant queries and structurally checks the generated
query triples against the underlying ontology. If the RSS fails to discover match-
ing relations or concepts within the KB, then it asks the user to disambiguate
the relation or concept from a given set of candidates. This module also uses
of string similarity metrics, lexical resources such as WordNet [15] and domain-
dependent lexica in order to generate query-triples that comply with the un-
derlying ontology. [16] However, existing linguistic rules pose difficulties with
respect to complex queries (requiring extension of the NLP component) which
the authors plan to remedy in future work.

Another CL implementation for knowledge engineering is the Cypher9

software from Monrai Technologies which translates natural language input into
RDF and SeRQL (Sesame RDF Query Language) according to grammars and

4 http://rewerse.net/
5 http://www.ifi.unizh.ch/attempto/tools/
6 http://www.ifi.unizh.ch/attempto/documentation/ape webservice.html
7 http://kmi.open.ac.uk/technologies/aqualog/
8 GATE provides the JAPE (Java Annotation Pattern Engine) language for match-

ing regular expressions over annotations, adding additional annotations to matched
spans, and manipulating the match patterns with Java code.

9 http://www.monrai.com/products/cypher/cypher manual

http://rewerse.net/
http://www.ifi.unizh.ch/attempto/tools/
http://www.ifi.unizh.ch/attempto/documentation/ape_webservice.html
http://kmi.open.ac.uk/technologies/aqualog/
http://www.monrai.com/products/cypher/cypher_manual

CLOnE: Controlled Language for Ontology Editing 145

lexica defined by the user in XML. Because Cypher is recently developed and
proprietary (but free of charge), no research papers exist to review.

Finally, GINO (Guided Input Natural Language Ontology Editor) provides
a guided, controlled NLI (natural language interface) for domain-independent
ontology editing for the Semantic Web. GINO incrementally parses the input
not only to warn the user as soon as possible about errors but also to offer the
user (through the GUI) suggested completions of words and sentences—similarly
to the “code assist” feature of Eclipse10 and other development environments.
GINO translates the completed sentence into triples (for altering the ontology)
or SPARQL11 queries and passes them to the Jena Semantic Web framework.
(The JENA Eyeball12 model checker verifies the OWL for consistency.) Although
the guided interface facilitates input, the sentences are quite verbose and do not
allow for aggregation. [17]

3 Design and Implementation

Taking into consideration the strengths and weaknesses of other controlled lan-
guage systems discussed above, we designed the CLOnE software and input
language to offer the following advantages.

1. CLOnE requires only one interpreter or runtime environment, the Java 1.5
JRE.

2. CLOnE is a sublanguage of English.
3. As far as possible, CLOnE is grammatically lax; in particular it does not

matter whether the input is singular or plural (or even in grammatical agree-
ment).

4. CLOnE can be compact; the user can create any number of classes or in-
stances in one sentence.

5. CLOnE is easy to learn by following examples and a few guiding rules,
without having to study formal expressions of syntax; nonetheless, the basic
(declarative) implementation of CLOnE uses only 10 syntactic rules.

6. Any valid sentence of CLOnE can be unambiguously parsed.

CLOnE has been favourably evaluated by test users (see Section 4) as part of
the SEKT project, and is being further developed for use in other projects (as
indicated in Section 6).

Each valid sentence of the controlled language matches exactly one syntactic
rule and consists of keyphrases (the fixed expressions in the language, which are
indexed in a gazetteer, and punctuation marks) and chunks (which are similar
to noun phrases and are used to name classes, instances, properties and values).
A quoted chunk, a series of words enclosed in paired quotation marks ("..."),
can contain reserved words that would otherwise be detected by the keyphrase

10 http://www.eclipse.org/
11 http://www.w3.org/TR/rdf-sparql-query/
12 http://jena.sourceforge.net/Eyeball/full.html

http://www.eclipse.org/
http://www.w3.org/TR/rdf-sparql-query/
http://jena.sourceforge.net/Eyeball/full.html

146 A. Funk et al.

gazetteer; tokens POS-tagged as determiners and prepositions are also used in
some syntactic rules, but otherwise all text that does not match any keyphrases
is expected to contribute to a chunk.

Procedurally, CLOnE’s analysis consists of the GATE pipeline of processing
resources (PRs) shown in Figure 1. This pipeline starts with a series of fairly
standard GATE NLP tools which add linguistic annotations and annotation fea-
tures to the document. These are followed by three PRs developed particularly
for CLOnE: the gazetteer of keywords and phrases fixed in the controlled lan-
guage and two JAPE transducers which identify quoted and unquoted chunks.
(Names enclosed in pairs of single or double quotation marks can include re-
served words, punctuation, prepositions and determiners, which are excluded
from unquoted chunks in order to keep the syntax unambiguous.)

Fig. 1. The CLOnE pipeline

The last stage of analysis, the CLOnE JAPE transducer, refers to the existing
ontology in several ways in order to interpret the input sentences. For example,
one syntactic rule has the structure13

– (Forget that) classes/instances are description preposition classes/

instances.

which would match the following input sentences.

– Persons are authors of documents.
– Carl Pollard and Ivan Sag are the authors of ’Head-Driven

Phrase Structure Grammar’.

This rule can take classes or instances as its arguments. The relevant Java
code refers to the ontology and behaves differently according to each argument’s
status in the ontology (class, instance, or non-existent). For this rule,

– if the domain and range arguments both refer to classes, the code creates
a new property between those classes (e.g. an Author property with the
domain Person and range Document);

13 In the rules, small capitals indicate chunks and chunklists (sequences of chunks
separated by commas or the keyword and), except that preposition has the obvious
meaning. Most of the rules have an optional Forget that prefix that corresponds to
“undo” or “delete”.

CLOnE: Controlled Language for Ontology Editing 147

– if the domain and range arguments both refer to instances and a suitable
property definition exists, the code defines a new property value between the
instances (e.g. attributing to the instances Carl Pollard and Ivan Sag the
property of authorship of the document HSPG); or

– in other cases (either argument does not exist, or one is a class and the other
an instance), the code generates an error message.

Consequently, the same syntactic rule has different semantics according to the
context. This means the user only has to learn one syntactic rule and can dis-
tinguish its two functions (semantic interpretations) intuitively, as in natural
language but with high precision for the software.

The following list explains the other rules of the CLOnE language.

Rule Example Action
(Forget that) There is/are
classes.

There are agents and
documents.

Create new classes (or
delete classes).

(Forget that) instances

is a/are class.
"University of
Sheffield" is a
university. Alice
Jones and Bob Smith
are persons.

Create (or delete) in-
stances of the class.

(Forget that) classes is/
are a type/types of class.

Universities and
persons are types
of agent. Dogs are a
type of mammal. Forget
that dogs are a type
of cat.

Make subclasses of the
last class in the sen-
tence (create new ones
if needed). (CLOnE
supports multiple inheri-
tance.) The negative form
unlinks the the subclass-
superclass relationship
(but does not delete the
subclass).

(Forget that) classes/

instances have classes/

instances.

Journals have
articles. "Journal of
Knowledge Management"
has "Crossing the
Chasm".

For lists of classes, create
properties of the form
Domain has Range. For
lists of instances, find
a suitable property and
instantiate it; if there is
a class-instance mismatch
or a suitable property
does not exist, generate
an error.

(Forget that) classes

have datatype descrip-

tion.

Projects have string
names. Deliverables
and conferences have
dates as deadlines.

Create datatype proper-
ties of the form Domain
has Description.

148 A. Funk et al.

Rule Example Action
(Forget that) instance

has description with
value value.

SEKT has name
with value
"Semantically-Enabled
Knowledge Technology".

Find a matching datatype
property for the instance
and instantiate it with the
given range value.

(Forget that) class/

instance is/are also
called/known as syn-

onyms.

Dogs are also called
canines. Bob Smith is
also called Bob.

Create synonyms (RDF
labels) for the class or in-
stance, which can be used
in later CLOnE state-
ments.

Forget everything. Forget everything. Clear the whole ontology
(and start over).

Forget classes/

instances.
Forget projects,
journals and
"Department of
Computer Science".

Delete all the classes and
instances listed.

4 Evaluation

4.1 Methodology

We prepared the following documents for the users, which the deliverable [18]
includes in full detail.

– The pre-test questionnaire asks each subject how much he thinks he al-
ready knows about ontologies, the Semantic Web, Protégé and controlled
languages. We scored this questionnaire by assigning each answer a value
from 0 to 2 and scaling the total to obtain a score of 0–100.

– The short manual introduces ontologies and provides “quick start” instruc-
tions for both pieces of software. Although much simpler, our manual was
partly inspired by Protégé’s Ontology 101 documentation. [19]

– The post-test questionnaire for each tool is the System Usability Scale (SUS),
which also produces a score of 0–100. [20]

– We devised a comparative questionnaire to measure each user’s preference
for one of the two tools. This form is scored similarly to SUS so that 0 would
indicate a total preference for Protégé, 100 would indicate a total preference
for CLOnE, and 50 would result from marking all the questions neutral. On
the reverse side and in discussion with the facilitator, we offered each user
the opportunity to make comments and suggestions.

– We prepared two similar lists of ontology-editing tasks, each consisting of
the following tasks:

• creating two subclasses of existing classes,
• creating two instances of different classes, and
• either (A) creating a property between two classes and defining a prop-

erty between two instances, or (B) defining two properties between two
pairs of instances.

CLOnE: Controlled Language for Ontology Editing 149

For example, here is task list A:

– Create a subclass Periodical of Document.
– Create a subclass Journal of Periodical.
– Create an instance Crossing the Chasm of class Article.
– Create an instance Journal of Knowledge Management of class Journal.
– Create a property that agents are publishers of documents.
– Define a property that Hamish Cunningham, Kalina Bontcheva and Yaoyong

Li are authors of Crossing the Chasm.

We recruited 15 volunteers with varying experience levels and asked each
subject to complete the pre-test questionnaire, to read the manual, and to carry
out each of the two task lists with one of the two tools. (Approximately half the
users carried out task list A with CLOnE and then task list B with Protégé; the
others carried out A with Protégé and then B with CLOnE.)

We measured each user’s time for each task list and in most cases (12 of 15)
for each sublist. After each task list we asked the user to complete the SUS
questionnaire for the specific tool used, and finally we asked him to complete
the comparative questionnaire.

4.2 Background

Our methodology constitutes a repeated-measures, task-based evaluation: each
subject carries out a similar list of tasks on both tools being compared.

We chose the SUS questionnaire as our principal measure of software usabil-
ity because it is a de facto standard in this field. Although superficially it seems
subjective and its creator called it “quick and dirty”, it was developed properly
as a Likert scale. [20] Furthermore, researchers at Fidelity Investments carried
out a comparative study of SUS and three other published usability question-
naires as well as an internal questionnaire used at that firm, over a population
of 123 subjects, to determine the sample sizes required to obtain consistent, ac-
curate results. They found that SUS produced the most reliable results across
all sample sizes; they noted a jump in accuracy to 75% at a sample size of 8, but
recommended a sample of at least 12–14 subjects. [21]

4.3 Quantitative Findings

Table 2 summarizes the main measures obtained from our evaluation.14 In par-
ticular, CLOnE’s usability scores are generally above the baseline of 65–70% [22]
and are generally distributed higher than Protégé’s, and scores on the compara-
tive questionnaire are generally favourable to CLOnE. Table 3 shows confidence
intervals for the SUS scores by tool and task list (A, B or combined); these in-
dicate that for each task list and for the combined results, the larger population
which our sample represents will also produce mean SUS scores for CLOnE that
are both higher than those for Protégé and above the SUS baseline.15

14 The deliverable [18] provides full details of the measurements discussed here.
15 A data sample’s 95% confidence interval is a range 95% likely to contain the mean

of the whole population that the sample represents. [23]

150 A. Funk et al.

Table 2. Summary of the questionnaire scores

Measure min mean median max
Pre-test scores 25 55 58 83
CLIE SUS rating 65 78 78 93
Protégé SUS rating 20 47 48 78
CLIE/Protégé preference 43 72 70 93

Table 3. Confidence intervals (95%) for the SUS scores

Tool Confidence intervals
Task list A Task list B Combined

Protégé 33–65 30–58 37–56
CLIE 75–93 67–79 73–84

We also generated Pearson’s and Spearman’s correlations coefficients16 for a
wide range of data from the experiments; Table 4 shows the highlights of these
calculations. In particular, we note the following points.

– The pre-test score has no correlation with task times or SUS results.
– The task times for both tools are moderately correlated with each other but

there are no significant correlations between task times and SUS scores, so
both tools are technically suitable for carrying out both task lists.

– As expected, the C/P preference score correlates moderately strongly with
the CLOnE SUS score and moderately negatively with the Protégé SUS
score. (The SUS scores for the two tools also show a weak negative correlation
with each other.) These figures confirm the coherence of the questionnaires
as a whole.

4.4 Sample Quality

Although our sample size (n = 15) satisifies the requirements for reliable SUS
evaluations (as discussed in Section 4.2), it is also worthwhile to establish the
consistency of the two partitions of our sample, as enumerated in Table 5:

16 A correlation coefficient over a set of pairs of numbers is analogous to a scatter plot:
+1 signifies a perfect correlation and corresponds to a graph in which all points lie
on a straight line with a positive slope; −1 signifies a perfect inverse correlation (the
points lie on a straight line with a negative slope); 0 indicates a complete lack of
correlation (random distribution of the points). Values above +0.7 and below −0.7
are generally considered to indicate strong correlations.

Pearson’s formula assumes that the two variables are linearly meaningful
(e.g. physical measurements such as temperature), whereas Spearman’s formula stip-
ulates only ordinal significance (ranking) and is often considered more suitable for
subjective measurements (such as many in the social sciences). [23,24]

CLOnE: Controlled Language for Ontology Editing 151

Table 4. Correlation coefficients

Measure Measure Pearson’s Spearman’s Correlation
Pre-test CLIE time -0.06 -0.15 none
Pre-test Protégé time -0.13 -0.27 none
Pre-test CLIE SUS -0.17 -0.17 none
Pre-test Protégé SUS -0.16 -0.15 none
CLIE time Protégé time 0.78 0.51 +
CLIE time CLIE SUS 0.26 0.15 none
Protégé time Protégé SUS -0.17 -0.24 none
CLIE time Protégé SUS 0.19 -0.01 none
Protégé time CLIE SUS 0.42 0.44 weak +
CLIE SUS Protégé SUS -0.31 -0.20 none
CLIE SUS C/P Preference 0.68 0.63 +
Protégé SUS C/P Preference -0.62 -0.63 −

by tool order and task-tool assignment: subjects who carried out task list
A on CLOnE and then B on Protégé, in comparison with those who carried
out A on Protégé then B on CLOnE; and

by sample source: subjects drawn from the GATE development team, in com-
parison with others.

Tool order was divided almost evenly among our sample. Although the SUS
scores differed slightly according to tool order (as indicated in Table 3), the
similar task times suggest that task lists A and B required similar effort. We note
that the SUS scores for each tool tend to be slightly lower for task list B than for
A, and we suspect this may have resulted from the subjects’ waning interest as
the evaluation progressed. (To eliminate the possibility of this effect completely
with the same reliability, we would need twice as many subjects, each carrying
out one task list with one tool—a between-subjects experiment, in contrast to our
within-subject experiment.) But because Table 3 in particular shows consistent
results between CLOnE and Protégé for each task list, we conclude that our
study was fair.

We must also consider the possibility of biased subjects drawn from colleagues
of the developers and facilitator. As Table 5 shows, colleagues in the GATE team
constituted 60% of the user sample. The measures summarized in Table 6, how-
ever, show in particular that although members of group G generally rated their
own expertise higher (in the pre-test questionnaire) than those in group NG, both
groups produced very similar ranges of SUS scores for each tool and of C/P pref-
erences scores. These measures allay concerns about biased subjects: we conclude
that groups G and NG were equally reliable so the sample as a whole is satisfactory
for the SUS evaluation (according to the research [21] explained in Section 4.2).

4.5 Subjects’ Suggestions and Comments

The test users made several suggestions about the controlled language and the
user interface.

152 A. Funk et al.

Table 5. Groups of subjects by source and tool order

Source Tool order Total
PC CP

G GATE team 4 5 9
NG others 4 2 6
Total 8 7 15

Table 6. Comparison of the two sources of subjects

Measure Group min mean median max
Pre-test G 25 62 67 83

NG 33 44 42 58
CLIE SUS G 65 78 78 90

NG 65 78 78 93
Protégé SUS G 25 46 48 70

NG 20 47 46 78
C/P Preference G 50 71 68 90

NG 43 74 79 93

– Several subjects complained that they needed to spell and type correctly
the exact names of the classes and instances, such as “Journal of Knowledge
Management” and that CLOnE is intolerant of typos and spelling mistakes.
They suggested spell-checking and hinting (as provided in the Eclipse UI)
to alleviate this cognitive load.

– A related suggestion is to highlight the input text with different colours for
classes, instances and properties, perhaps after the user clicks a Check but-
ton, which would be provided in addition to the Run button. The Check
button could also suggest corrections and give error messages without af-
fecting the ontology.

– Users complained that it was difficult to tell why some input sentences failed
to have any effect, because CLOnE does not explicitly indicate unparsable
sentences. (This has already been corrected in subsequent work.)

– Some suggested that CLOnE should automatically clear the input text box
after each run, but they also realized this would make it more difficult to
correct errors, because it is currently easy to prefix the keyword forget to
incorrect sentences from the previous input without having to retype them.

– Some suggested making the Run button easier to find and putting the on-
tology viewer and the input box on the screen at the same time instead of
in alternative panes.

– A few users said it would be useful to have an Undo button that would simply
reverse the last input text, instead of having to forget all the sentences
individually.

CLOnE: Controlled Language for Ontology Editing 153

5 Conclusion

Our user evaluation consistently indicated that our subjects found CLOnE sign-
ficantly more usable and preferable than Protégé for the straightforward tasks
that we assigned. Of course we make no claims about the more complicated
knowledge engineering work for which Protégé but not CLOnE is designed and
intended. The users considered CLOnE picky about spelling and typing, but
they found the language basically easy to learn and use.

Our subjects made several interesting and useful suggestions for improvements
to CLOnE, many of which we already envisage developing in future work on
this software beyond SEKT, as Section 6 will indicate. In particular, we will
embed CLOnE in wikis and perhaps other user interfaces which will eliminate
some of the constraints imposed by running it in the GATE GUI, which is
really intended for developing language engineering applications (such as CLOnE
itself) rather than for interactively editing language resources (such as documents
and ontologies). The use of CLOnE in NEPOMUK will especially address these
issues.

6 Continuing and Future Work

We have discussed using CLOnE to generate ontologies from input text. The
reverse of the process involves the generation of CLOnE from an existing on-
tology by shallow NLG (natural language generation). A prototype component
for generating CLOnE has already been implemented as a GATE resource. The
textual output of the generator is configured using a an XML file, which contains
text templates that are instantiated and filled in with ontological values. The NL
generator and the authoring process both combine to form a Round-Trip Ontol-
ogy Authoring environment: one can start with an existing or empty ontology,
produce CLOnE using the NL generator, modify or edit the text as requirement
and subsequently parse the text back into the ontology using the CLOnE en-
vironment. The process can be repeated as necessary until the required result
is obtained. Current developments in relation to the NL generator involve ex-
tending modifying the XML templates with respect to the generator’s linguistic
output so that it complies with the grammar and subsequent extensions such as
alternatives for expressing the same message. This is essential in order to ensure
that the generation component does not interfere with ontological data created
or modified by CLOnE. This work is currently being carried out in collabora-
tion with DERI Galway17 on the integration of CLOnE as a web service for
Round Trip Ontology Authoring as a part the Nepomuk18 Solution (The Social
Semantic Desktop). We are also investigating the provision of CLOnE as a local
service within one of the promised semantic wikis in addition to the possible use
of CLOnE for Semi-Automatic Semantic Annotation. Shallow, template-based

17 http://www.deri.ie/
18 http://nepomuk.semanticdesktop.org/xwiki/

http://www.deri.ie/
http://nepomuk.semanticdesktop.org/xwiki/

154 A. Funk et al.

NLG of CLOnE will also be exploited in KnowledgeWeb19 for the verbalization
suggestions for semi-automatic ontology integration.

In the TAO project, CLOnE is currently being extended and embedded in
applications to allow controlled-language querying of knowledge bases. This will
allow non-expert users (who are not familiar with SeRQL and other sophisticated
semantic search tools) to ask questions in an extended version of CLOnE; they
are translated by the application into SeRQL or SPARQL and evaluated by
OWLIM.

We are also assisting the EPSRC-funded Easy project to use CLOnE to pro-
vide a controlled natural language interface for editing IT authorization policies
(access to network resources such as directories and printers) stored as ontolo-
gies. This project will probably involve specialized extensions to the controlled
language as well as a virtuous circle or round-trip information flow, to be com-
pleted by generation of CLOnE, similar to the work in NEPOMUK. [25]

Acknowledgements

This research has been partially supported by the following grants: Knowl-
edgeWeb (EU Network of Excellence IST-2004-507482), TAO (EU FP6 project
IST-2004-026460), SEKT (EU FP6 project IST-IP-2003-506826, Ĺıon (Science
Foundation Ireland project SFI/02/CE1/1131) and NEPOMUK (EU project
FP6-027705).

References

1. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: ACL 2002. Proceedings of the 40th Anniversary Meeting of the Association for
Computational Linguistics (2002)

2. Tablan, V., Polajnar, T., Cunningham, H., Bontcheva, K.: User-friendly ontology
authoring using a controlled language. In: 5th Language Resources and Evaluation
Conference (2006)

3. Schwitter, R.: Controlled natural languages. Technical report, Centre for Language
Technology, Macquarie University (2007)

4. Caterpillar Corporation: Dictionary for Caterpillar Fundamental English. Cater-
pillar Corporation (1974)

5. Adriaens, G., Schreurs, D.: From COGRAM to ALCOGRAM: Toward a controlled
English grammar checker. In: COLING 1992. Conference on Computational Lin-
guistics, Nantes, France, pp. 595–601 (1992)

6. Schwitter, R., Tilbrook, M.: Controlled natural language meets the semantic web
(2004)

7. Horrocks, I., Patel-Schneider, P.: Three theses of representation in the semantic
web (2003)

8. Fuchs, N., Schwitter, R.: Attempto Controlled English (ACE). In: CLAW 1996.
Proceedings of the First International Workshop on Controlled Language Applica-
tions, Leuven, Belgium (1996)

19 http://knowledgeweb.semanticweb.org/

http://knowledgeweb.semanticweb.org/

CLOnE: Controlled Language for Ontology Editing 155

9. Fuchs, N.E., Kaljurand, K., Kuhn, T., Schneider, G., Royer, L., Schröder, M.:
Attempto Controlled English and the semantic web. Deliverable I2D7, REWERSE
Project (2006)

10. Hoefler, S.: The syntax of Attempto Controlled English: An abstract grammar for
ACE 4.0. Technical Report ifi-2004.03, Department of Informatics, University of
Zurich (2004)

11. Kaljurand, K., Fuchs, N.E.: Bidirectional mapping between OWL DL and At-
tempto Controlled English. In: Fourth Workshop on Principles and Practice of
Semantic Web Reasoning, Budva, Montenegro (2006)

12. Kuhn, T.: Attempto Controlled English as ontology language. In: Bry, F., Schwer-
tel, U. (eds.) REWERSE Annual Meeting 2006 (2006)

13. Kaljurand, K.: Writing owl ontologies in ace. Technical report, University of Zurich
(2006)

14. Bernstein, A., Kaufmann, E., Göring, A., Kiefer, C.: Querying Ontologies: A Con-
trolled English Interface for End-users. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 112–126. Springer, Heidel-
berg (2005)

15. Fellbaum, C. (ed.): WordNet - An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

16. Lopez, V., Motta, E.: Ontology driven question answering in AquaLog. In: Meziane,
F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, Springer, Heidelberg (2004)

17. Bernstein, A., Kaufmann, E.: GINO—a guided input natural language ontology
editor. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg
(2006)

18. Funk, A., Davis, B., Tablan, V., Bontcheva, K., Cunningham, H.: Controlled lan-
guage IE components version 2. Deliverable D2.2.2, SEKT (2006)

19. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your
first ontology. Technical Report KSL-01-05, Stanford Knowledge Systems Labora-
tory (2001)

20. Brooke, J.: SUS: a “quick and dirty” usability scale. In: Jordan, P., Thomas, B.,
Weerdmeester, B., McClelland, A. (eds.) Usability Evaluation in Industry, Taylor
and Francis, London (1996)

21. Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website
usability. In: Usability Professionals’ Association Conference, Minneapolis, Min-
nesota (2004)

22. Bailey, B.: Getting the complete picture with usability testing. Usability updates
newsletter, U.S. Department of Health and Human Services (2006)

23. John, L., Phillips, J.: How to Think about Statistics. W. H. Freeman and Company,
New York (1996)

24. Connolly, T.G., Sluckin, W.: An Introduction to Statistics for the Social Sciences,
3rd edn. Macmillan, NYC (1971)

25. Chadwick, D., Sasse, A.: The virtuous circle of expressing authorization policies.
In: Semantic Web Policy Workshop, Athens, Georgia (2006)

	Introduction
	Related Work
	Design and Implementation
	Evaluation
	Methodology
	Background
	Quantitative Findings
	Sample Quality
	Subjects' Suggestions and Comments

	Conclusion
	Continuing and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

